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ABSTRACT

Research results obtained under the grant are summarized. Con.

tributions to periodic control include: theory, computational methods and

applications to aircraft cruise. The theory centers around necessary or

sufficient conditions for optimality and gives information on whether or

not periodic operation of a dynamic system gives better performance than

steady-state operation. The treatment is comprehensive and includes new

second- order conditions which have simplified assumptions and incorporate

control constraints. Some of these results follow from a new approach

to the derivation of higher-order necessary conditions. The approach

doesn't require normality assumptions and has provided other new results,

including second-order necessary conditions in optimal control. A method

for computing periodic optima is described. It addresses difficulties

observed in other approaches and has proved effiective in example problems.

Optimal aircraft cruise (specific range, endurance, peak altitude) was

studied as an application of theoretical and computational techniques.

Under special circumstances (e.g., altitude constraints, low wing loading

and drag, high thrust limits), it appears that periodic cruise is signifi-

cantly better than steady-state cruise. Some research was also done on

the theory of nonlinear systems. It includes: functional expansions for

input-output maps, conditions for realizability, a backward shift approach

to internally bilinear realizations and canonical forms for minimal-order

realizations of two-power input-output maps.
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INTRODUCTION

Many dynamic systems, such as jet engines and air~raft in cruise,

are operated in an optimum steady-state mode. Sometimes it is possible to

improve the performance of these systems still further by using time-

dependent periodic controls. Such improvement is based on the exploitation

of system nonlinearities which are only active when the system is in motion.

The first examples of improvement were noted in the field of chemical

process control. This led to the first paper on optimal periodic control

[a] and a subsequent, rapid development of a general theory. See

c c, d] for surveys of the theoretical results through 1975. Early

I. applications to vehicle and aircraft cruise appear in [ e, f, g]

This report describes research which was carried out over the

period October 1, 1976 to January 31, 1982 under AFOSR Grant Number

77-3158. The original objectives of this grant were to study the theory of

periodic control and develop methods for the computation of periodic optima.

Considerable progress has been made in these directions. In addition, the

investigations have led into several other areas. The most important of

these are optimization and nonlinear systems. The Bibliography gives a

chronological listing of journal articles, conference papers, articles

submitted for publication and articles in preparation. In the sections

which follow, these contributions are reviewed. The emphasis is on a

general description of the results and their relation to applications and

prior research. For the items still in preparation, a somewhat more

detailed account is given.
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Personnel associated with the research effort included: Elmer G.

Gilbert (principal investigator); Arthur E. Frazho (post-doctoral researcher,

1976-1978), Daniel T. Lyons (PhD student, 1976-1980), Dennis S. Bernstein

(PhD student, 1977-1982). The activities carried out by Lyons and Bernstein

contributed significantly to their PhD degrees (see items [ 15, 22 ] of the

Bibliography). The papers [ 3,4] received the 0. H. Schuck Award of the

American Automatic Control Council for the best contribution at the 1977

Joint Automatic Control Conference. The journal article [ 61 received

special recognition by the IEEE Control Systems Society.

There have been a number of interactions with the professional and

academic community. Spoken papers include items [1, 2, 3, 4, 7, 8, 11, 12, 13,

17, 18, 19 ] and a presentation by Gilbert at the 1979 Optimization Days

Conference in Montreal. Seminars were presented by Gilbert at the

following universities: Michigan, Minnesota, Purdue, Washington (St. Louis),

Rochester, Johns Hopkins. Several conversations were held with Jason L.

C. Speyer who has been concerned with aircraft cruise and the computation of

periodic optima. At the December 1981 Conference on Decision and Control

Gilbert participated in an informal meeting of researchers working in

periodic control (J. Speyer, P. Dorato, S. Bittanti, R. Evans, D.

Rodabaugh). Presently, there is a study of periodic aircraft cruise at the

Lockheed-California Company. Researchers there (E. Shapiro and D.

Rodabaugh) have been motivated by work done under this grant [13, 15, 18],

and are trying to extend it to specific aircraft. They have been in touch

with both Gilbert and Lyons.

3I



Ii

THEORY OF PERIODIC CONTROL

A general formulation for an optimal periodic control problem

(OPC) is:

(1) ;C(t) =f(Xl(t),u(t)) , t IE [ 0, T]

(Z) u(t)E UC Rm, x(O) = x(T) E R, T E (O,T] C R,

T
(3) ~T f (x(t), u(t)) dt E Rl

0

(4) gi(y) < 0 , i = - j ....- 1

gi(y)= 0 , i= I..., k

(5) J = g0(y)

Here (1) describes the dynamic system and (2) gives the constraints. The

vector y is the average over the period r of the quantities of interest,

f(x(t),u(t)), in the optimization problem. The objective is to minimize J

by choice of u(. ),x(. ) and T subject to the additional constraints (4).

The related optimal steady-state problem (OSS) is obtained when

x(.) and u(.) are assumed to be constant:

(6) 0 = f(x,u)
, n

(7) uE U , xeR,

(8) y = f(x,u).

As in OPC the cost and additional constraints are given by (4) and (5). The

problem OSS is simpler than OPC because it is finite-dimensional. Since OSS

is a specialization of OPC it may happen that OPC yields a lower cost than

the optimal cost in OSS. When this does happen it is said that OPC is

proper.

4 IV4
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Much of the early literature (see [b,c,d] ) concerns necessary

conditions for optimality in OPC and OSS and tests for proper. The

portion of this research area related to first-order necessary conditions

is brought together in a very general, unified treatment in [ 1,5 ] . These

papers include: a precise statement of necessary conditions, a set of tests

for proper (based on the maximum principle and relaxed controls), rela-

tionships between tests for proper and a proof that the set of tests cannot

be made larger. Most of the research for [ 1, 5] was completed before

the grant began.

Some sufficient conditions for steady-state optimality in OPC are

given in [ 10] . They require that f(xu) = Ax + h(u) and that gi(y) , i

i = -j,... ,k, and f(x,u) satisfy certain convexity assumptions. Care is

taken to establish close connections to the results of [5] . The sufficient

conlditions give some indication of circ-omstances under which OPC cannot

be proper. For example, OPC cannot be proper if the plant is modelled

by linear differential equations and the cost functional is convex. This

underlines the importance of understanding the effects of nonlinearities in

periodic control problems.

One approach to a fuller understanding of the nonlinearities is

second-order theory. As first shown in [h] this leads to frequency-domain

conditions called H1 tests. The paper [14] makes three contributions in

this direction: (1) it gives a II test for OPC, which is a more general

problem than the one considered in [h] , (2) it shows that "normality"

conditions must be added if the results of [h] are to be valid, (3) it

5
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explores fully the relationships between necessary and sufficient con-

ditions for optimality in OSS and OPC. With respect to (3), the attack is

similar in spirit to the treatment of first-order conditions presented in [ 5]

The results in [ 14 ] have two limitations: they require normality

conditions which may be difficult to verify or may not be satisfied, and the

control set U must be open. The latter limitation is troublesome in

practical applications because optima often occur on the boundaries of

closed constraint sets. The investigation of the limitations (mostly by

Bernstein) led ultimately to a new theory of higher-order necessary

conditions in optimization and optimal control. This theory is reviewed

in the next section. A consequence of the theory is a new ]I test for proper. j
This test will be developed fully in [ 23 ]; here, only the test itself will be

described.

Let the general notation and assumptions in [14] hold. Let U be

a convex (not necessarily open) set. Define

(9) {(,L,;) " (Xpa) E RnX R X R3  satisfies (10)},

where

(10) H ,H = 0
x Y

H u > 0 , u+uEUu -

a. > 0 , i 0

gi = 0

r is the set of multipliers that satisfy the first-order necessary conditions

--- l-- i m. V



for optimality in OSS. Notice that (10) becomes (3. 3) in [14] when U is

open. Define I and I by

(11) I = I,...,k} , I = i :i < 0, g= 0 } U { 0,..., k}

Theorem. Assume (x,u) solves OSS. Then r is not empty.

nM cCm Z
Let x E R, u E R , wiE and w > T , w 4 EZ(A) satisfy (3.5)

of [14] and

(12) u + u + Re n e E U, t e [ 0,

Then if

(13) y' H y+x'H xxx+ Zx' xu+u'H uuu+ 0 ,1(w,<

for all , a)E r

OPC is proper.

A few comments are in order. Because H H , H Hyy xx X' uu

and 1(w) depend on (X,I, a) the appearance of r in (13) is significant.

Condition (13) cannot hold if '1 = 0 (this is an easy consequence of the

second-order necessary conditions for optimality in OSS). If u is in the

boundary of U , it is usually not possible to satisfy (12) unless u # 0

If U = Rm (as in [14] ) the choice rj 0 0 , u = 0 , x = 0 , y = 0 is possible

and H1(w) < 0 for all (C,,) E r becomes a test for proper. This is

like the condition (5. 3) in Theorem 5. I of [ 14] , except there r does not

appear. This is because the normality assumption in Theorem 5.1 implies

r is a single ray with a > 0 * Thus by setting a = I , (X,ij, a) is
0' 0

unique. The appearance of r in (13) is the complication which results from

the lack of any normality assumption in the above theorem.

7
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When f(x, u) and f(x,u) are replaced respectively by f(t,x,u) and

f(t,x,u), OPC is changed drastically. For example, OSS becomes much

more complicated. To maintain periodicity it is necessary to assume that

T is fixed and that f(t,x,u) and f(t,x,u) are periodic in t with period .

An example of this situation is the periodic cruise of a solar-powered

aircraft. Then T 2 24 hours and the time-dependence of f(t,x,u) and

f(t,x,u) accounts for the variation in solar radiation during the day. Little

work has been done on such time-dependent systems.

The note [ 17] concerns a class of mechanical systems which are

time-dependent. The objective is to extract energy from the systems by

means of periodically-varying applied forces. A characterization of the

optimal control is obtained and, when the mechanical system is conservative,

it takes on an especially simple form. This leads to a feedback control law

for mechanizing a near optimal control. The feedback control is a new

idea and appears to have practical advantages. The research will be

developed more fully in a future paper.

HIGHER-ORDER NECESSARY CONDITIONS IN OPTIMIZATION

The principal contribution of [ 20 ] is a systematic approach to

higher-order necessary conditions in optimization theory. The approach

is based on a very general, abstract optimization problem: Minimize

+0 (e) subject to

(14) e e E

8
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(15) 4(e) < 0

(16) (P(e) = 0

where: F_ is a set, E C , k positive integer, E Tik'

lo and are topological vector spaces, 0 0 and

:•-- . Let Z C 0 and Z C be closed convex cones with

Anonempty interior such that Zo 0 0O and Z . if z, z E 30 , then

z < z means z - z E Zo Identical notation applies for z,2 E .

Necessary conditions are derived for this problem under weak

assumptions on 4o , 4, %4 and E. They take the following form. Let

e solve the optimization problem. Denote the set of bounded linear maps

from X intoR by * Then there exists I =(I I ) E)0
such that

(17) 1 0

(18) ,4 E z* z'* { I E j:( *O EZ ZZ*= < 0, zo

(19) 1. ((e) + Y) = 0

(20) 1(h) > 0 , hE K.

In these conditions Y E Z = Z X Z is a generalized critical direction and0

K C X % k is a convex set which is used together with a map 9 (defined

on a subset of K into E) to form a representation for E. The necessary

conditions and the required assumptions are in the spirit of those given by

Neustadt [ i] , but the results are stronger and involve the (new) .oncept

of a critical direction.

By specializing E and making assumptions on the differentiability

ofle , 0 and i4 conditions (17) - (20) lead to necessary conditions of

. ... .. . .. . .'- , ,',.0.
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arbitrary order. In particular, Y and K are related respectively

to the intermediate-order and highest-order terms in a series expansion

of the functions co 4 and qj.

One set of results concerns first- and second-order necessary

conditions when 6is a subset of a vector space and o 0 ; and 41 have

directional differentials. The second-order results generalize necessary

conditions due to Warga (Theorem 2. 3 of [jJ ) in the following ways: The

optimization problem is more general, the hypotheses are weaker and a

normality assumption is not required. Another set of results concerns first-

second- and third-order necessary conditions when & is a Banach space and

0' and have Frechet derivatives of appropriate order. While similar

conditions of first- and second-order have appeared previously, the third-

order conditions appear to be new.

The lack of normality assumptions in all of the above results means

that the multipliers (e. g., (I ,1 ) in (17) - (20)) are not necessarily

unique. This brings up interesting questions which are explored at length

in [21,22].

The paper [21 1 applies the preceding theory to the following problem

in optimal control: minimize J(x(. ),u(" )) subject to

(21) J(x(-),u(. )) = *o(X(t), x(t))

(22) *i(x(tl),x(t 2 )) < 0 , i 1.... ,j

(23) (x(t 1),x(t 2 )) = 0

(24) (t) f(t,x(t),u(t)) , t [t t2  J

10



Her~ (t) E Rn u(t) 4U CF, f:RxP.nx~m--iRnHer 0 , V Rn

O i:,n XPRn -k and J •Rnx5,n -. p, k Under suitable

assumptions on f , pi and t4 and the class of control functions, second-

order necessary conditions for optimality are derived and expressed

concisely in terms of Lagrangian and Hamiltonian functions and a multiplier-

free characterization of admissible variations. The optimal control problem

is more general than problems considered previously [ k, I I in the rigorous

derivation of second-order necessary conditions. Unlike [k, I ] normality

assumptions are not required. This leads to an unusual min-max formula-

tion of an accessory minimum problem. A number of questions concerning

normality and regularity (uniqueness of multipliers) occur and are examined.

The new necessary conditions should be useful in a variety of applications

involving optimal control. The generalized I1 test described in the pre-

ceding section is an example.

The necessary conditions of the preceding paragraph are based on

"weak" variations. The same approach can be applied to relaxed controls

[ j J . Under suitable assumptions this gives a new second-order necessary

condition for ordinary controls. See Theorem 6. 3 of [ 21]

COMPUTATIONAL METHODS

The computation of solutions of OPC is difficult. This has been

observed by Speyer and his coworkers [e,m,n] and by Lyons in his first

attempts to optimize aircraft cruise. The computational use of necessary

. , - l " 1 1"I I { I l llI I
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conditions seems particulary hazardous in view of [m,n] . There it

is shown that the necessary conditions may have rich families of solutions.

Thus, there is a good chance that computational algorithms may yield

a solution of the necessary conditions which is not a solution of OPC.

Another approach is to use a gradient descent algorithm in the space of

controls. But then it is difficult to satisfy the periodicity constraint

x(O) = x('r) precisely.

The following approach addresses these difficulties and has proved

to be effective. The state function x(t) is represented by a (vector)

polynomial spline function. The periodicity constraint is satisfied exactly
by making the spline function periodic. This establishes a one-to-one

correspondence between the spline and the values of the spline at its

joints. The differential equation (1) is solved by choice of the control

function u(t). This step requires that f has a special structure so when x(t)

is given there exists a u(t) which solves (1). Fortunately, the structure

is often present. For example, suppose x(t) = (S(t),V(t)) where

S(t), V(t) E n 2and (1) can be written

(25) S(t) = V(t) , V(t) = F(S(t),V(t)) + u(t)

Then if S(t) is a twice-differentiable periodic spline the (periodic) control

which solves the differential equation is given by

(26) u(t) = 5(t) - F(S(t), S(t))

Once x(t) and u(t) are known, the integral in (3) is evaluated by an accurate

quadrature formula such as Simpson's rule. Control constraints and the

- 12



constraints (4) are incorporated by means of penalty functions. The

resulting optimization problem is finite-dimensional because all the data

(x(t),u(t), y, giy ) are determined by the values of the spline at its joints.

The approach just described has proved to be effective in applications

such as those in the next section (see [13,15,18 ] ). Its advantages include:

exact satisfaction of the periodicity constraint, an exact solution of the

differential equation (1), control of the smoothness of x(t) by selecting the

type of spline and the location of its joints, simple formulas for computing the

penalized cost and its derivatives with respect to the joint values and an

efficient start-up procedures for the minimization algorithm when the

spline has many joints. Simple problems have been solved by minimi-

zation algorithms which use only the values of the penalized cost. More complex

problems with difficult constraints require gradient descent algorithms

and an augmented Lagrangian approach for the penalty terms.

AIRCRAFT CRUISE

For many years it was assumed that fuel-optimal aircraft cruise

was steady-state. This belief was debated in a series of papers in the

early 1970's (see [ e,g] for references and comment). Using techniques

from the theory of optimal control, Speyer [ e ] gave evidence that

steady-state cruise is not necessarily optimal. This evidence was

supported by the work of Gilbert and Parsons [ g ] who modelled aircraft

cruise as a problem in periodic control. Using the energy-state model

for aircraft motion and the idea of relaxed steady-state control [ 5,b,c,d]

13 p
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they showed that time-dependent periodic control increases the specific

range for the F-4 aircraft and a class of subsonic aircraft models.

Unfortunately, the results of these papers are not totally convincing.

In [ e ] the improvements are small and in [ g ] the required "chattering"

controls can only be approximated by physically realistic controls.

This was the state of affairs when research under the grant began.

Since then, considerable progress has been made. Results on the improve-

ment of specific range have appeared in [13,18] . The PhD dissertation

[ 15] includes additional results, some of which will appear in [ 24]

The following paragraphs give a brief summary of the work which has been

done. Significant improvements in cruise performance appear feasible

in certain specialized situations.

Three aircraft cruise problems have been studied: maximum

specific range, maximum endurance and maximum peak altitude. In all

three problems the same point-mass model is used. In it range is the

independent variable. The controls are lift and thrust and the state variables

are altitude, velocity and flight-path angle. The basic assumptions are:

a classical subsonic lift-drag relation, an exponential atmospheric density,

constant thrust-specific fuel consumption, limits on altitude and engine

thrust. This model captures the essential nonlinearities and dynamics and

is much more realistic than the energy-state model. The model is
1

characterized by three nondimensional parameters: 6 = - minimum
2

lift-to-drag ratio, = constant X (wing loading) X (air density at

reference altitude)l m = (maximum engine thrust) X (engine thrust for

optimal steady-state cruise at reference altitude) "

14
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In all three problems both analytical and computational approaches

are used. The analytical studies involve simplifications of the model and

employ generalizations of methods from periodic control (relaxed- controls,

quasi-steady-state controls, frequency response); the objective is to

estimate the effects of parameter change and give insight into the mechanisms

which cause improvement. In the computational studies optimal periodic

trajectories are determined without making any simplifications of the

model. A number of solutions for different values of the key parameters

are obtained. Thus, performance trends are established.

In the specific range problem a constraint on the maximum altitude

is necessary if improvements in cruise are to occur. Under the best

conditions (6 < .05, < .05, T> 8, reference altitude = maximum

altitude) fuel consumption can be reduced by more than 25%. Optimal

periodic cruise requires (approximately) a maximum-range glide followed

by a transition to a fuel-efficient, full-thrust climb which recovers the altitude

lost in the glide. The periodic cruise is better than optimal steady-state

cruise because thrusting takes place at high speeds where energy addition

is most efficient.

In the endurance problem a constraint on the minimum altitude is

essential for improvement. Under the beat conditions (6 < . 05, p < . 04,

T > 8, reference altitude = minimum altitude) fuel consumption can be

reduced by more than 3206. The form of the optimal trajectory is (approx-

imately) a minimum-rate-of-descent glide followed by a transition to a( maximum- rate of- ascent climb.

_715
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The maximization of peak altitude is not a special case of OPC.

Thus ad hoc techniques, somewhat similar to those used for the range

and endurance problems, must be used. The results obtained are less

complete and additional physical considerations appear. For example,

the dynamic pressure at peak altitude must be constrained. Otherwise,

aerodynamic control would be lost at peak altitude. An upper bound on

the peak altitude is the loft ceiling. Realistic periodic cruise trajectories

which approach this altitude have been obtained.

Another, more complex problem in periodic flight was also

investigated. Part of the motivation was to test further the computational

techniques of the previous section. The problem concerns the motion of

a gliding aircraft in a horizontal wind with vertical shear. Observations

of bird flight suggest that it should be possible (by periodic flight) to

extract energy from the wind shear and stay aloft despite drag losses.

Analyses [o, p] based on crude models of motion verify this possibility,

but computational efforts on realistic models have not been undertaken.

A reasonably good model [ o] for flight through wind shear is

(27) V W siny cos y cos CD V sin

(28) = W siny cos + CLV coa -V "I cosY

(29) = W tan y sin + CLV(cos Y)' sin1

(30) C = C +KC L
D DL

0

where V = normalized wind speed of aircraft, y = flight path angle,

16
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= heading angle, CD = drag coefficient, CL = lift coefficient, j = bank

angle, W = wind shear (constant), K = . 02 and CD = . 03. An optimal
0

periodic control problem is formed by defining the cost

(31) J = f V sin y dt = average rate of descent.
0

If min J < 0 , it is certainly possible to maintain altitude.

The problem (27) - (31) was solved by the method of the previous

section. The state variables V, y, P were specified by periodic cubic

splines and the equations of motion (27) . (29) satisfied by selecting the

controls CD, C , . The control constraint (30) was implemented by
D LI

a penalty function approach. The gradient of J with respect to the spline

values at the knots was computed; the implementation employed basis

splines and was quite efficient. The resulting finite-dimensional

problem (dimension = 15 and 30) was solved numerically by a standard

qu.Lsi-Newton algorithm. Convergence tended to be slow and was probably

caused by the penalty function implementation of (30).

The first computations were for a single period (T = 10) and

W = . 25, . 5 , 1. 0. They all gave physically realistic trajectories with

J < 0. Later computations with longer periods led to better values for

J, but the trajectories were physically unrealistic. Multiple local minima

were also discovered. Additional work will be done in the future and

reported in a paper.
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NONLINEAR SYSTEMS THEORY

The research on nonlinear systems theory grew out of attempts

to express the periodic solutions of (1) by means of a functional series,

similar in form to a Volterra series. The objective was to obtain new

conditions and tests for optimality which were of order two and higher.

A variational series approach proved to be effective and was instrumental

in developing ideas which helped lead to some of the results outlined in

the preceding sections [ 14, 20, 21] The consequences in the area of

nonlinear 7ystems theory are now described. Applications by other

researchers can be found in the literature (see, e.g. , [ q, ri ).

The papers [4, 61 develop the general theory of variational series

and apply it to the derivation of Volterra series and Volterra-like series

for the input-output maps of nonlinear differential systems. There are

a number of advantages over the Carleman technique proposed earlier by

Brockett and Krener (see, e. g. , [s] ). The approach also extends to

many other types of dynamical systems, including discrete-time systems.

These ideas are carried further in [ 3, 9 J . By observing the

form of the second-order terms in the variational series for the dynamical

system is easy to obtain necessary and sufficient conditions for the

realizability of input-output maps as finite-dimensional, nonlinear dynamical

,ystems (both continuous-time and discrete-time). The more involved

algebraic approach of the earlier literature (e. g. , [t, u I ) is avoided.

Another application of [ 6] is given in[ 19] , It elaborates and

combines results in earlier conference papers [2, 12 The structural

18
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representation in (6] is modified to obtain a class of minimal-order

realizations for continuous-time, two-power, input-output maps. Further

developments describe the entire class of realizations, show how they

are connected to the class of realizable symmetric Volterra transfer

functions and give a simple canonical form for the (equivalence) class of

minimal-order realizations. A theory of minimal realizations for

internally bilinear systems was known before [v] ; but [2] is believed

to be the first published result for a general class of nonlinear systems.

Crouch [ w] has obtained deep results for a general class of nonlinear

systems with polynomial input-output maps. For the (special) two-power

case, the details in [ 19 ] are more general and complete.

In 1976 Frazho had been working on the use of restricted backward

shift realizations in the theory of linear systems. He and Gilbert saw that

this formalism provided an alternative view for the theory and realization

of internally bilinear dynamical systems. Gilbert discusses the

formalism and applies it to linear systems in [8] . He also describes how

to obtain a simple characterization for the class of partial realizations.

In [ 7, 11, 16 ] Frazho developes an elegant statement of the theory for the

nonlinear problem. W. J. Rugh was aware of this research in its early

stages and has incorporated modification of it in his recent book [ r I on

nonlinear systems theory. Extensions to systems which are internally

state-affine have been published recently by Frazho [x]
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SENSITIVITY OF CHARACTERISTIC ROOTS

The research described in this section is not connected to the other

research done under the grant. It was motivated by a conversation with

Dr. E. Shapiro of the Lockheed-California Company. He observed that,

whatever the design approach, good antopilot systems often have an

interesting property: the eigenvectors of the linear closed-loop system

are (approximately) mutually orthogonal. He wondered if there was some

unknown, underlying reason. Gilbert arrived at a possible explanation

based on the sensitivity of characteristic roots. A paper on this work is

being prepared [ 25 1 . The following is a brief review of the main results.

Let A be an n by n real matrix and let Xi(A) be a real characteristic

root of A. If X.(A) is distinct, X i(A) is a continuously differentiable1 1

function of a k' j, k = 1, ... , n, the elements of A. There are formulas

for the n 2 first partial derivatives of X (A). Let the n by n matrix of

these partial derivatives by given by

ax
(32) 5i = F 1

1 8ak]

and let vi, w i e R satisfy the conditions (prime denotes transpose)
1t

(33) Av. =-X.v., A'w Xw v'w = ., v.'v. = 1

Such vectors are known to exist and (Jacobi's formula [yJ)

(34) S. w v,
1 i2

I- -'
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Since S. has n elements it is an overly elaborate characterization1

for measuring root sensitivity in design. If A is not sparce and all of

its elements are subject to variations, the (Euclidean) norm of S. is a

good (scalar) measure for root sensitivity. Let it be given by

n

(35) A i i - r( (,i)

j, k=l jk

How can . be made small by the choice of A? This question comes

up in design because the close-loop matrix A depends on choice of the

control law.

The minimization of over the a.k has a simple answer:

i(A)> I for all A and .i(A) = I if and only if the eigenvector v. is

orthogonal to all other eigenvectors of A. Though the proofs are more

involved, similar results have been derived when X. is complexI

(Xi = i +  M i W i W i E R). For example,

(36) 7 = I II1"

jk

satisfies C i > 1 and 2." = if and only if the (complex)

eigenvectors corresponding to the characteristic roots o-. + %r- I",

are orthogonal to all other eigenvectors of A. Analgous results have
.2 2

been obtained for the sensitivities of w. and + 7
S1
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If all root sensitivites are made minimal, the mutual orthogonality

of eigenvectors mentioned in the beginning paragraph of this section

occurs. This suggests that root sensitivity may have been an underlying

objective in the autopilot designs. The above results may lead to a design

procedure for multivariable systems when root sensitivity is incorporated

directly. For example, the sensitivity requirements could be achieved

by state feedback using eigenvector placement techniques [z
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